A simple and flexible device for LabView applications

A. Hohn, E. Schaub, S. Ebers, R. Schibli

Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

LabView is the state of the art programming tool for measurement and control applications and the market offers a wide range of sophisticated data acquisition tools (DAQ). However, for radionuclide separation purposes a high sample rate and a high accuracy is often not necessary. Therefore, we were looking for a low-cost DAQ with a USB interface for maximum flexibility and sufficient I/O lines. Finally, we decided to use the USB-6008 by National Instruments. This small size, low-cost DAQ has 8 analog inputs, 2 analog outputs and 12 digital I/O lines. Mounted on a print together with a transistor for each digital line (Fig. 1) this DAQ is the base of our device.

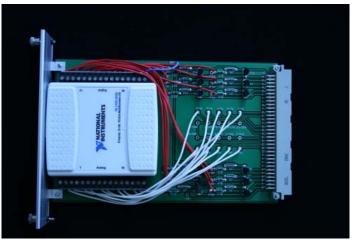


Fig. 1 USB DAQ mounted on a print

For the portable version of our device (Fig.2) the USB DAQ module is mounted in a desktop rack together with a power supply module (24 V, 120 W) and a relay module containing 12 relays. Additional slots are available for other modules. Each single module can be replaced easily in case of a failure. If more slots are needed all modules can be mounted as well in a 19" rack

Fig. 2 Portable device for LabView applications with a mounted PC

Several additionally modules like a temperature module and a pulse-width-modulator (PWM) are available. An amplifier for pH measurements and for activity measurements with photodiode radiation detectors (Fig.3) was developed. This amplifier with a variable gain is a modified version of the amplifier described by Zeisler et al. Another module is a mini PC including a hard drive. In combination with a touch screen the device can be used without an external PC or notebook.

Fig. 3 Amplifier with photodiode radiation detector

The described devices are used in our group for the routine production of radionuclides (⁸⁹Zr and ⁶⁴Cu) for several years without any problems.

Literature:

Zeisler, S. K., Ruth, T. J., Rektor, M. P. (1994). "A Photodiode Radiation Detektor for PET Chemistry Modules." <u>Appl. Radiat. and Isotopes</u> **45**(3): 377-378.